
Unit IV (Essential of Information Technology)

1. What is RDBMS?

RDBMS stands for Relational Database Management System. RDBMS is the basis

for SQL, and for all modern database systems like MS SQL Server, IBM DB2,

Oracle, MySQL, and Microsoft Access.

A Relational database management system (RDBMS) is a database management

system (DBMS) that is based on the relational model as introduced by E. F. Codd.

Advantages of relational database management system

The use of an RDBMS can be beneficial to most organizations; the systematic

view of raw data helps companies better understand and execute the information

while enhancing the decision-making process. The use of tables to store data also

improves the security of information stored in the databases. Users are able to

customize access and set barriers to limit the content that is made available. This

feature makes the RDBMS particularly useful to companies in which the manager

decides what data is provided to employees and customers.

Furthermore, RDBMSes make it easy to add new data to the system or alter

existing tables while ensuring consistency with the previously available content.

Other advantages of the RDBMS include:

Flexibility -- updating data is more efficient since the changes only need to be

made in one place.

Maintenance -- database administrators can easily maintain, control and update

data in the database. Backups also become easier since automation tools included

in the RDBMS automate these tasks.

Data structure -- the table format used in RDBMSes is easy to understand and

provides an organized and structural manner through which entries are matched by

firing queries.

On the other hand, relational database management systems do not come without

their disadvantages. For example, in order to implement an RDBMS, special

software must be purchased. This introduces an additional cost for execution. Once

the software is obtained, the setup process can be tedious since it requires millions

of lines of content to be transferred into the RDBMS tables. This process may

require the additional help of a programmer or a team of data entry specialists.

Special attention must be paid to the data during entry to ensure sensitive

information is not placed into the wrong hands.

Some other drawbacks of the RDBMS include the character limit placed on certain

fields in the tables and the inability to fully understand new forms of data -- such

as complex numbers, designs and images.

Furthermore, while isolated databases can be created using an RDBMS, the

process requires large chunks of information to be separated from each other.

Connecting these large amounts of data to form the isolated database can be very

complicated.

Uses of RDBMS

Relational database management systems are frequently used in disciplines such as

manufacturing, human resources and banking. The system is also useful for airlines

that need to store ticket service and passenger documentation information as well

as universities maintaining student databases.

Some examples of specific systems that use RDBMS include IBM, Oracle,

MySQL, Microsoft SQLServer and PostgreSQL.

What is a table?

The data in an RDBMS is stored in database objects which are called as tables. This
table is basically a collection of related data entries and it consists of numerous
columns and rows.

Remember, a table is the most common and simplest form of data storage in a
relational database. The following program is an example of a CUSTOMERS table −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

What is a field?

Every table is broken up into smaller entities called fields. The fields in the
CUSTOMERS table consist of ID, NAME, AGE, ADDRESS and SALARY.

A field is a column in a table that is designed to maintain specific information about
every record in the table.

What is a Record or a Row?

A record is also called as a row of data is each individual entry that exists in a table.
For example, there are 7 records in the above CUSTOMERS table. Following is a
single row of data or record in the CUSTOMERS table −

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

+----+----------+-----+-----------+----------+

A record is a horizontal entity in a table.

What is a column?

A column is a vertical entity in a table that contains all information associated with a
specific field in a table.

For example, a column in the CUSTOMERS table is ADDRESS, which represents
location description and would be as shown below −

+-----------+

| ADDRESS |

+-----------+

| Ahmedabad |

| Delhi |

| Kota |

| Mumbai |

| Bhopal |

| MP |

| Indore |

+----+------+

What is a NULL value?

A NULL value in a table is a value in a field that appears to be blank, which means a
field with a NULL value is a field with no value.

It is very important to understand that a NULL value is different than a zero value or a
field that contains spaces. A field with a NULL value is the one that has been left blank
during a record creation.

2. SQL Constraints

Constraints are the rules enforced on data columns on a table. These are used to limit
the type of data that can go into a table. This ensures the accuracy and reliability of the
data in the database.

Constraints can either be column level or table level. Column level constraints are
applied only to one column whereas, table level constraints are applied to the entire
table.

Following are some of the most commonly used constraints available in SQL −

• NOT NULL Constraint − Ensures that a column cannot have a NULL value.

• DEFAULT Constraint − Provides a default value for a column when none is specified.

• UNIQUE Constraint − Ensures that all the values in a column are different.

• PRIMARY Key − Uniquely identifies each row/record in a database table.

• FOREIGN Key − Uniquely identifies a row/record in any another database table.

• CHECK Constraint − The CHECK constraint ensures that all values in a column satisfy
certain conditions.

• INDEX − Used to create and retrieve data from the database very quickly.

3. Data Integrity

The following categories of data integrity exist with each RDBMS −

• Entity Integrity − There are no duplicate rows in a table.

• Domain Integrity − Enforces valid entries for a given column by restricting the type, the
format, or the range of values.

• Referential integrity − Rows cannot be deleted, which are used by other records.

• User-Defined Integrity − Enforces some specific business rules that do not fall into entity,
domain or referential integrity.

4. Database Normalization

https://www.tutorialspoint.com/sql/sql-not-null.htm
https://www.tutorialspoint.com/sql/sql-default.htm
https://www.tutorialspoint.com/sql/sql-unique.htm
https://www.tutorialspoint.com/sql/sql-primary-key.htm
https://www.tutorialspoint.com/sql/sql-foreign-key.htm
https://www.tutorialspoint.com/sql/sql-check.htm
https://www.tutorialspoint.com/sql/sql-index.htm

Database normalization is the process of efficiently organizing data in a database.
There are two reasons of this normalization process −

• Eliminating redundant data, for example, storing the same data in more than one table.

• Ensuring data dependencies make sense.

Both these reasons are worthy goals as they reduce the amount of space a database
consumes and ensures that data is logically stored. Normalization consists of a series
of guidelines that help guide you in creating a good database structure.

Normalization guidelines are divided into normal forms; think of a form as the format or
the way a database structure is laid out. The aim of normal forms is to organize the
database structure, so that it complies with the rules of first normal form, then second
normal form and finally the third normal form.

It is your choice to take it further and go to the fourth normal form, fifth normal form and
so on, but in general, the third normal form is more than enough.

• First Normal Form (1NF)

• Second Normal Form (2NF)

• Third Normal Form (3NF)

• Fourth Normal form

• BCNF

• Fifth Normal form

First normal form (1NF)

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values.

It should hold only atomic values.

Example: Suppose a company wants to store the names and contact details of its employees. It

creates a table that looks like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

https://www.tutorialspoint.com/sql/first-normal-form.htm
https://www.tutorialspoint.com/sql/second-normal-form.htm
https://www.tutorialspoint.com/sql/third-normal-form.htm

102 Jon Kanpur

8812121212

9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore

9990000123

8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in

the same field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single)

values”, the emp_mobile values for employees Jon & Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

• Table is in 1NF (First normal form)
• No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example: Suppose a school wants to store the data of teachers and the subjects they teach. They

create a table that looks like this: Since a teacher can teach more than one subjects, the table can

have multiple rows for a same teacher.

teacher_id subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because

non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of

candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute is

dependent on the proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

• Table must be in 2NF
• Transitive functional dependency of non-prime attribute on any super key should be removed.

https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each

functional dependency X-> Y at least one of the following conditions hold:

• X is a super key of table
• Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they create

a table named employee_details that looks like this:

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

https://beginnersbook.com/2015/04/candidate-key-in-dbms/
https://beginnersbook.com/2015/04/super-key-in-dbms/

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any

candidate keys.

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent on

emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively

dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the

transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

Boyce Codd normal form (BCNF)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than

3NF. A table complies with BCNF if it is in 3NF and for every functional dependency X->Y, X

should be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one department.

They store the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table:

emp_dept dept_type dept_no_of_emp

Production and planning D001 200

stores D001 250

design and technical support D134 100

Purchasing department D134 600

emp_dept_mapping table:

emp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

5. ORACLE

It is a very large multi-user based database management system. Oracle is a relational
database management system developed by 'Oracle Corporation'.

Oracle works to efficiently manage its resources, a database of information among the
multiple clients requesting and sending data in the network.

It is an excellent database server choice for client/server computing. Oracle supports
all major operating systems for both clients and servers, including MSDOS, NetWare,
UnixWare, OS/2 and most UNIX flavors.

History

Oracle began in 1977 and celebrating its 32 wonderful years in the industry (from 1977
to 2009).

• 1977 - Larry Ellison, Bob Miner and Ed Oates founded Software Development Laboratories
to undertake development work.

• 1979 - Version 2.0 of Oracle was released and it became first commercial relational
database and first SQL database. The company changed its name to Relational Software
Inc. (RSI).

• 1981 - RSI started developing tools for Oracle.

• 1982 - RSI was renamed to Oracle Corporation.

• 1983 - Oracle released version 3.0, rewritten in C language and ran on multiple platforms.

• 1984 - Oracle version 4.0 was released. It contained features like concurrency control -
multi-version read consistency, etc.

• 1985 - Oracle version 4.0 was released. It contained features like concurrency control -
multi-version read consistency, etc.

• 2007 - Oracle released Oracle11g. The new version focused on better partitioning, easy
migration, etc.

Features

• Concurrency

• Read Consistency

• Locking Mechanisms

• Quiesce Database

• Portability

• Self-managing database

• SQL*Plus

• ASM

• Scheduler

• Resource Manager

• Data Warehousing

• Materialized views

• Bitmap indexes

• Table compression

• Parallel Execution

• Analytic SQL

• Data mining

• Partitioning

6. Data Model

Data Model gives us an idea that how the final system will look like after its

complete implementation. It defines the data elements and the relationships

between the data elements. Data Models are used to show how data is stored,

connected, accessed and updated in the database management system. Here, we

use a set of symbols and text to represent the information so that members of the

organisation can communicate and understand it. Though there are many data

models being used nowadays but the Relational model is the most widely used

model. Apart from the Relational model, there are many other types of data models

about which we will study in details in this blog. Some of the Data Models in

DBMS are:

1. Hierarchical Model

2. Network Model

3. Entity-Relationship Model

4. Relational Model

5. Object-Oriented Data Model

6. Object-Relational Data Model

7. Flat Data Model

8. Semi-Structured Data Model

9. Associative Data Model

10. Context Data Model

Entity-Relationship Model

Entity-Relationship Model or simply ER Model is a high-level data model

diagram. In this model, we represent the real-world problem in the pictorial form to

make it easy for the stakeholders to understand. It is also very easy for the

developers to understand the system by just looking at the ER diagram. We use the

ER diagram as a visual tool to represent an ER Model. ER diagram has the

following three components:

• Entities: Entity is a real-world thing. It can be a person, place, or even a

concept. Example: Teachers, Students, Course, Building, Department, etc

are some of the entities of a School Management System.

• Attributes: An entity contains a real-world property called attribute. This is

the characteristics of that attribute. Example: The entity teacher has the

property like teacher id, salary, age, etc.

• Relationship: Relationship tells how two attributes are

related. Example: Teacher works for a department.

Example:

In the above diagram, the entities are Teacher and Department. The attributes

of Teacher entity are Teacher_Name, Teacher_id, Age, Salary, Mobile_Number.

The attributes of entity Department entity are Dept_id, Dept_name. The two

entities are connected using the relationship. Here, each teacher works for a

department.

Features of ER Model

• Graphical Representation for Better Understanding: It is very easy and

simple to understand so it can be used by the developers to communicate

with the stakeholders.

• ER Diagram: ER diagram is used as a visual tool for representing the

model.

• Database Design: This model helps the database designers to build the

database and is widely used in database design.

Advantages of ER Model

• Simple: Conceptually ER Model is very easy to build. If we know the

relationship between the attributes and the entities we can easily build the

ER Diagram for the model.

• Effective Communication Tool: This model is used widely by the database

designers for communicating their ideas.

• Easy Conversion to any Model: This model maps well to the relational

model and can be easily converted relational model by converting the ER

model to the table. This model can also be converted to any other model like

network model, hierarchical model etc.

Disadvatages of ER Model

• No industry standard for notation: There is no industry standard for

developing an ER model. So one developer might use notations which are

not understood by other developers.

• Hidden information: Some information might be lost or hidden in the ER

model. As it is a high-level view so there are chances that some details of

information might be hidden.

Relational Model

Relational Model is the most widely used model. In this model, the data is

maintained in the form of a two-dimensional table. All the information is stored in

the form of row and columns. The basic structure of a relational model is tables.

So, the tables are also called relations in the relational model. Example: In this

example, we have an Employee table.

Features of Relational Model

• Tuples: Each row in the table is called tuple. A row contains all the

information about any instance of the object. In the above example, each

row has all the information about any specific individual like the first row

has information about John.

• Attribute or field: Attributes are the property which defines the table or

relation. The values of the attribute should be from the same domain. In the

above example, we have different attributes of the employee like Salary,

Mobile_no, etc.

Advnatages of Relational Model

• Simple: This model is more simple as compared to the network and

hierarchical model.

• Scalable: This model can be easily scaled as we can add as many rows and

columns we want.

• Structural Independence: We can make changes in database structure

without changing the way to access the data. When we can make changes to

the database structure without affecting the capability to DBMS to access the

data we can say that structural independence has been achieved.

Disadvantages of Relatinal Model

• Hardware Overheads: For hiding the complexities and making things easier

for the user this model requires more powerful hardware computers and data

storage devices.

• Bad Design: As the relational model is very easy to design and use. So the

users don't need to know how the data is stored in order to access it. This

ease of design can lead to the development of a poor database which would

slow down if the database grows.

But all these disadvantages are minor as compared to the advantages of the

relational model. These problems can be avoided with the help of proper

implementation and organisation.

Entity Relationship Diagram – ER Diagram in DBMS

An Entity–relationship model (ER model) describes the structure of a database

with the help of a diagram, which is known as Entity Relationship Diagram (ER

Diagram). An ER model is a design or blueprint of a database that can later be

implemented as a database. The main components of E-R model are: entity set and

relationship set.

What is an Entity Relationship Diagram (ER Diagram)?

An ER diagram shows the relationship among entity sets. An entity set is a group

of similar entities and these entities can have attributes. In terms of DBMS, an

entity is a table or attribute of a table in database, so by showing relationship

among tables and their attributes, ER diagram shows the complete logical structure

of a database. Lets have a look at a simple ER diagram to understand this concept.

A simple ER Diagram:

In the following diagram we have two entities Student and College and their

relationship. The relationship between Student and College is many to one as a

college can have many students however a student cannot study in multiple

colleges at the same time. Student entity has attributes such as Stu_Id, Stu_Name

& Stu_Addr and College entity has attributes such as Col_ID & Col_Name.

Here are the geometric shapes and their meaning in an E-R Diagram. We will

discuss these terms in detail in the next section(Components of a ER Diagram) of

this guide so don’t worry too much about these terms now, just go through them

once.

Rectangle: Represents Entity sets.

Ellipses: Attributes

Diamonds: Relationship Set

Lines: They link attributes to Entity Sets and Entity sets to Relationship Set

Double Ellipses: Multivalued Attributes

Dashed Ellipses: Derived Attributes

Double Rectangles: Weak Entity Sets

Double Lines: Total participation of an entity in a relationship set

Components of a ER Diagram

As shown in the above diagram, an ER diagram has three main components:

1. Entity

2. Attribute

3. Relationship

1. Entity

An entity is an object or component of data. An entity is represented as rectangle in

an ER diagram.

For example: In the following ER diagram we have two entities Student and

College and these two entities have many to one relationship as many students

study in a single college. We will read more about relationships later, for now

focus on entities.

Weak Entity:

An entity that cannot be uniquely identified by its own attributes and relies on the

relationship with other entity is called weak entity. The weak entity is represented

by a double rectangle. For example – a bank account cannot be uniquely identified

without knowing the bank to which the account belongs, so bank account is a weak

entity.

2. Attribute

An attribute describes the property of an entity. An attribute is represented as Oval

in an ER diagram. There are four types of attributes:

1. Key attribute

2. Composite attribute

3. Multivalued attribute

4. Derived attribute

1. Key attribute:

A key attribute can uniquely identify an entity from an entity set. For example,

student roll number can uniquely identify a student from a set of students. Key

attribute is represented by oval same as other attributes however the text of key

attribute is underlined.

2. Composite attribute:

An attribute that is a combination of other attributes is known as composite

attribute. For example, In student entity, the student address is a composite

attribute as an address is composed of other attributes such as pin code, state,

country.

3. Multivalued attribute:

An attribute that can hold multiple values is known as multivalued attribute. It is

represented with double ovals in an ER Diagram. For example – A person can

have more than one phone numbers so the phone number attribute is multivalued.

4. Derived attribute:

A derived attribute is one whose value is dynamic and derived from another

attribute. It is represented by dashed oval in an ER Diagram. For example –

Person age is a derived attribute as it changes over time and can be derived from

another attribute (Date of birth).

E-R diagram with multivalued and derived attributes:

3. Relationship

A relationship is represented by diamond shape in ER diagram, it shows the

relationship among entities. There are four types of relationships:

1. One to One

2. One to Many

3. Many to One

4. Many to Many

1. One to One Relationship

When a single instance of an entity is associated with a single instance of another

entity then it is called one to one relationship. For example, a person has only one

passport and a passport is given to one person.

2. One to Many Relationship

When a single instance of an entity is associated with more than one instances of

another entity then it is called one to many relationship. For example – a customer

can place many orders but a order cannot be placed by many customers.

3. Many to One Relationship

When more than one instances of an entity is associated with a single instance of

another entity then it is called many to one relationship. For example – many

students can study in a single college but a student cannot study in many colleges

at the same time.

4. Many to Many Relationship

When more than one instances of an entity is associated with more than one

instances of another entity then it is called many to many relationship. For

example, a can be assigned to many projects and a project can be assigned to many

students.

Total Participation of an Entity set

A Total participation of an entity set represents that each entity in entity set must

have at least one relationship in a relationship set. For example: In the below

diagram each college must have at-least one associated Student.

7. Converting ER Diagrams to Tables-

Before you go through this article, make sure that you have gone through the previous
article on ER Diagrams to Tables.

After designing an ER Diagram,

• ER diagram is converted into the tables in relational model.

• This is because relational models can be easily implemented by RDBMS like MySQL , Oracle
etc.

• The rules used for converting an ER diagram into the tables are already discussed.

In this article, we will discuss practice problems based on converting ER Diagrams to
Tables.

PRACTICE PROBLEMS BASED ON CONVERTING ER
DIAGRAM TO TABLES-

Problem-01:

Find the minimum number of tables required for the following ER diagram in relational
model-

Solution-

Applying the rules, minimum 3 tables will be required-

• MR1 (M1 , M2 , M3 , P1)

• P (P1 , P2)

https://www.gatevidyalay.com/er-diagrams-to-tables/
https://www.gatevidyalay.com/er-diagrams/

• NR2 (P1 , N1 , N2)

Problem-02:

Find the minimum number of tables required to represent the given ER diagram in
relational model-

Solution-

Applying the rules, minimum 4 tables will be required-

• AR1R2 (a1 , a2 , b1 , c1)

• B (b1 , b2)

• C (c1 , c2)

• R3 (b1 , c1)

Problem-03:

Find the minimum number of tables required to represent the given ER diagram in
relational model-

Solution-

Applying the rules, minimum 5 tables will be required-

• BR1R4R5 (b1 , b2 , a1 , c1 , d1)

• A (a1 , a2)

• R2 (a1 , c1)

• CR3 (c1 , c2 , d1)

• D (d1 , d2)

Problem-04:

Find the minimum number of tables required to represent the given ER diagram in
relational model-

Solution-

Applying the rules, minimum 3 tables will be required-

• E1 (a1 , a2)

• E2R1R2 (b1 , b2 , a1 , c1 , b3)

• E3 (c1 , c2)

Problem-05:

Find the minimum number of tables required to represent the given ER diagram in
relational model-

Solution-

Applying the rules that we have learnt, minimum 6 tables will be required-

• Account (Ac_no , Balance , b_name)

• Branch (b_name , b_city , Assets)

• Loan (L_no , Amt , b_name)

• Borrower (C_name , L_no)

• Customer (C_name , C_street , C_city)

• Depositor (C_name , Ac_no)

.

Following rules are used for converting an ER diagram into the tables-

Rule-01: For Strong Entity Set With Only Simple
Attributes-

A strong entity set with only simple attributes will require only one table in relational
model.

• Attributes of the table will be the attributes of the entity set.

• The primary key of the table will be the key attribute of the entity set.

Example-

Roll_no Name Sex

Schema : Student (Roll_no , Name , Sex)

Rule-02: For Strong Entity Set With Composite
Attributes-

• A strong entity set with any number of composite attributes will require only one table in
relational model.

• While conversion, simple attributes of the composite attributes are taken into account and not
the composite attribute itself.

Example-

Roll_no First_name Last_name House_no Street City

Schema : Student (Roll_no , First_name , Last_name , House_no , Street , City)

Rule-03: For Strong Entity Set With Multi Valued
Attributes-

A strong entity set with any number of multi valued attributes will require two tables in
relational model.

• One table will contain all the simple attributes with the primary key.

• Other table will contain the primary key and all the multi valued attributes.

Example-

Roll_no City

Roll_no Mobile_no

Rule-04: Translating Relationship Set into a Table-

A relationship set will require one table in the relational model.

Attributes of the table are-

• Primary key attributes of the participating entity sets

• Its own descriptive attributes if any.

Set of non-descriptive attributes will be the primary key.

Example-

Emp_no Dept_id since

Schema : Works in (Emp_no , Dept_id , since)

NOTE-

If we consider the overall ER diagram, three tables will be required in relational model-

• One table for the entity set “Employee”

• One table for the entity set “Department”

• One table for the relationship set “Works in”

Rule-05: For Binary Relationships With Cardinality
Ratios-

The following four cases are possible-

Case-01: Binary relationship with cardinality ratio m:n

Case-02: Binary relationship with cardinality ratio 1:n

Case-03: Binary relationship with cardinality ratio m:1

Case-04: Binary relationship with cardinality ratio 1:1

Case-01: For Binary Relationship With Cardinality Ratio m:n

Here, three tables will be required-

1. A (a1 , a2)

2. R (a1 , b1)

3. B (b1 , b2)

Case-02: For Binary Relationship With Cardinality Ratio 1:n

Here, two tables will be required-

1. A (a1 , a2)

2. BR (a1 , b1 , b2)

NOTE- Here, combined table will be drawn for the entity set B and relationship set R.

Case-03: For Binary Relationship With Cardinality Ratio m:1

Here, two tables will be required-

1. AR (a1 , a2 , b1)

2. B (b1 , b2)

NOTE- Here, combined table will be drawn for the entity set A and relationship set R.

Case-04: For Binary Relationship With Cardinality Ratio 1:1

Here, two tables will be required. Either combine ‘R’ with ‘A’ or ‘B’

Way-01:

1. AR (a1 , a2 , b1)

2. B (b1 , b2)

Way-02:

1. A (a1 , a2)

2. BR (a1 , b1 , b2)

Thumb Rules to Remember

While determining the minimum number of tables required for binary relationships with given

cardinality ratios, following thumb rules must be kept in mind-

• For binary relationship with cardinality ration m : n , separate and individual tables will be drawn for each
entity set and relationship.

• For binary relationship with cardinality ratio either m : 1 or 1 : n , always remember “many side will consume
the relationship” i.e. a combined table will be drawn for many side entity set and relationship set.

• For binary relationship with cardinality ratio 1 : 1 , two tables will be required. You can combine the
relationship set with any one of the entity sets.

Rule-06: For Binary Relationship With Both Cardinality
Constraints and Participation Constraints-

• Cardinality constraints will be implemented as discussed in Rule-05.

• Because of the total participation constraint, foreign key acquires NOT NULL constraint i.e.
now foreign key can not be null.

Case-01: For Binary Relationship With Cardinality Constraint and Total Participation

Constraint From One Side-

Because cardinality ratio = 1 : n , so we will combine the entity set B and relationship set
R.

Then, two tables will be required-

1. A (a1 , a2)

2. BR (a1 , b1 , b2)

Because of total participation, foreign key a1 has acquired NOT NULL constraint, so it
can’t be null now.

Case-02: For Binary Relationship With Cardinality Constraint and Total Participation

Constraint From Both Sides-

If there is a key constraint from both the sides of an entity set with total participation,
then that binary relationship is represented using only single table.

Here, Only one table is required.

• ARB (a1 , a2 , b1 , b2)

Rule-07: For Binary Relationship With Weak Entity
Set-

Weak entity set always appears in association with identifying relationship with total
participation constraint.

Here, two tables will be required-

1. A (a1 , a2)

2. BR (a1 , b1 , b2)

SQL: SQL consist of following four types of sub-languages

• Data Definition Language(DDL) – Consists of commands which are used to define the database.
• Data Manipulation Language(DML) – Consists of commands which are used to manipulate the

data present in the database.
• Data Control Language(DCL) – Consists of commands which deal with the user permissions and

controls of the database system.
• Transaction Control Language(TCL) – Consist of commands which deal with the transaction of

the database.

Apart from the above commands, the following topics will also be covered in this article:

▪ Comments in SQL
▪ Different Types Of Keys In Database
▪ Constraints Used In Database

https://www.edureka.co/blog/sql-commands#DDL
https://www.edureka.co/blog/sql-commands#DML
https://www.edureka.co/blog/sql-commands#DCL
https://www.edureka.co/blog/sql-commands#TCL
https://www.edureka.co/blog/sql-commands#Comments
https://www.edureka.co/blog/sql-commands#Keys%20In%20Database
https://www.edureka.co/blog/sql-commands#Constraints

▪ Nested Queries
▪ Joins
▪ Set Operations
▪ Dates & Auto Increment
▪ Views
▪ Stored Procedures
▪ Triggers

In this article on SQL Commands, I am going to consider the below database as an example, to

show you how to write commands.

EmployeeID EmployeeName
Emergency

ContactName
PhoneNumber Address City Country

01 Shanaya Abhinay 9898765612
Oberoi

Street 23
 Mumbai India

02 Anay Soumya 9432156783

Marathalli

House No

23

Delhi India

03 Preeti Rohan 9764234519
Queens

Road 45
Bangalore India

04 Vihaan Akriti 9966442211

Brigade

Road Block

4

Hyderabad India

05 Manasa Shourya 9543176246
Mayo Road

23
Kolkata India

So, let’s get started now!

Comments in SQL

There are two ways in which you can comment in SQL, i.e. either the Single-Line Comments or

the Multi-Line Comments.

Single-Line Comments

The single line comment starts with two hyphens (–). So, any text mentioned after (–), till the

end of a single line will be ignored by the compiler.

Example:

1 --Select all:

https://www.edureka.co/blog/sql-commands#Nested%20Queries
https://www.edureka.co/blog/sql-commands#Joins
https://www.edureka.co/blog/sql-commands#Set%20Operations
https://www.edureka.co/blog/sql-commands#Dates%20and%20Auto%20Increment
https://www.edureka.co/blog/sql-commands#Views
https://www.edureka.co/blog/sql-commands#Stored%20Procedures
https://www.edureka.co/blog/sql-commands#Triggers
https://www.edureka.co/blog/sql-commands#Single-Line%20Comments
https://www.edureka.co/blog/sql-commands#Multi-Line%20Comments

2 SELECT * FROM Employee_Info;

Multi-Line Comments

The Multi-line comments start with /* and end with */. So, any text mentioned between /* and */

will be ignored by the compiler.

Example:

1

2

3

4

/*Select all the columns

of all the records

from the Employee_Info table:*/

SELECT * FROM Students;

SQL Commands: Data Definition Language Commands

(DDL)

This section of the article will give you an insight into the commands through which you can

define your database. The commands are as follows:

•
▪ CREATE
▪ DROP
▪ TRUNCATE
▪ ALTER
▪ BACKUP DATABASE

CREATE

This statement is used to create a table or a database.

The ‘CREATE DATABASE’ Statement

As the name suggests, this statement is used to create a database.

Syntax

CREATE DATABASE DatabaseName;
Example

1 CREATE DATABASE Employee;

The ‘CREATE TABLE’ Statement

This statement is used to create a table.

Syntax

CREATE TABLE TableName (
Column1 datatype,
Column2 datatype,

https://www.edureka.co/blog/sql-commands#CREATE
https://www.edureka.co/blog/sql-commands#DROP
https://www.edureka.co/blog/sql-commands#TRUNCATE
https://www.edureka.co/blog/sql-commands#ALTER
https://www.edureka.co/blog/sql-commands#BACKUP%20DATABASE

Column3 datatype,
....

ColumnN datatype
);
Example

1

2

3

4

5

6

7

8

9

10

CREATE TABLE Employee_Info

(

EmployeeID int,

EmployeeName varchar(255),

Emergency ContactName varchar(255),

PhoneNumber int,

Address varchar(255),

City varchar(255),

Country varchar(255)

);

You can also create a table using another table. Refer the below sytax and example:

The ‘CREATE TABLE AS’ Statement

Syntax

CREATE TABLE NewTableName AS
SELECT Column1, column2,..., ColumnN
FROM ExistingTableName
WHERE;
Example

1

2

3

CREATE TABLE ExampleTable AS

SELECT EmployeeName, PhoneNumber

FROM Employee_Info;

DROP

This statement is used to drop an existing table or a database.

The ‘DROP DATABASE’ Statement

This statement is used to drop an existing database. When you use this statement, complete

information present in the database will be lost.

Syntax

DROP DATABASE DatabaseName;
Example

1 DROP DATABASE Employee;

The ‘DROP TABLE’ Statement

This statement is used to drop an existing table. When you use this statement, complete

information present in the table will be lost.

Syntax

DROP TABLE TableName;
Example

1 DROP Table Employee_Info;

TRUNCATE

This command is used to delete the information present in the table but does not delete the table.

So, once you use this command, your information will be lost, but not the table.

Syntax

TRUNCATE TABLE TableName;
Example

1 TRUNCATE Table Employee_Info;

ALTER

This command is used to delete, modify or add constraints or columns in an existing table.

The ‘ALTER TABLE’ Statement

This statement is used to add, delete, modify columns in an existing table.

The ‘ALTER TABLE’ Statement with ADD/DROP COLUMN

You can use the ALTER TABLE statement with ADD/DROP Column command according to

your need. If you wish to add a column, then you will use the ADD command, and if you wish to

delete a column, then you will use the DROP COLUMN command.

Syntax

ALTER TABLE TableName
ADD ColumnName Datatype;

ALTER TABLE TableName
DROP COLUMN ColumnName;
Example

1

2

--ADD Column BloodGroup:

ALTER TABLE Employee_Info

3

4

5

6

7

8

9

ADD BloodGroup varchar(255);

--DROP Column BloodGroup:

ALTER TABLE Employee_Info

DROP COLUMN BloodGroup ;

The ‘ALTER TABLE’ Statement with ALTER/MODIFY COLUMN

This statement is used to change the datatype of an existing column in a table.

Syntax

ALTER TABLE TableName
ALTER COLUMN ColumnName Datatype;
Example

1

2

3

4

5

6

7

--Add a column DOB and change the data type to Date.

ALTER TABLE Employee_Info

ADD DOB year;

ALTER TABLE Employee_Info

ALTER DOB date;

BACKUP DATABASE

This statement is used to create a full backup of an existing database.

Syntax

BACKUP DATABASE DatabaseName
TO DISK = 'filepath';
Example

1

2

BACKUP DATABASE Employee

TO DISK = 'C:UsersSahitiDesktop';

You can also use a differential back up. This type of back up only backs up the parts of the

database, which have changed since the last complete backup of the database.

Syntax

BACKUP DATABASE DatabaseName
TO DISK = 'filepath'
WITH DIFFERENTIAL;
Example

1

2

3

BACKUP DATABASE Employee

TO DISK = 'C:UsersSahitiDesktop'

WITH DIFFERENTIAL;

Now that you know the data definition commands, let me take you through the various types of

Keys and Constraints that you need to understand before learning how to manipulate the

databases.

SQL Commands: Different Types Of Keys In Database

There are mainly 7 types of Keys, that can be considered in a database. I am going to consider

the below tables to explain to you the various keys.

• Candidate Key – A set of attributes which can uniquely identify a table can be termed as a
Candidate Key. A table can have more than one candidate key, and out of the chosen candidate
keys, one key can be chosen as a Primary Key. In the above example, since EmployeeID,
InsuranceNumber and PanNumber can uniquely identify every tuple, they would be considered
as a Candidate Key.

• Super Key – The set of attributes which can uniquely identify a tuple is known as Super Key. So,
a candidate key, primary key, and a unique key is a superkey, but vice-versa isn’t true.

• Primary Key – A set of attributes which are used to uniquely identify every tuple is also a
primary key. In the above example, since EmployeeID, InsuranceNumber and PanNumber are
candidate keys, any one of them can be chosen as a Primary Key. Here EmployeeID is chosen as
the primary key.

• Alternate Key – Alternate Keys are the candidate keys, which are not chosen as a Primary key.
From the above example, the alternate keys are PanNumber and Insurance Number.

• Unique Key – The unique key is similar to the primary key, but allows one NULL value in the
column. Here the Insurance Number and the Pan Number can be considered as unique keys.

• Foreign Key – An attribute that can only take the values present as the values of some other
attribute, is the foreign key to the attribute to which it refers. in the above example, the
Employee_ID from the Employee_Information Table is referred to the Employee_ID from the
Employee_Salary Table.

• Composite Key – A composite key is a combination of two or more columns that identify each
tuple uniquely. Here, the Employee_ID and Month-Year_Of_Salary can be grouped together to
uniquely identify every tuple in the table.

SQL Commands: Constraints Used In Database

Constraints are used in a database to specify the rules for data in a table. The following are the

different types of constraints:

▪ NOT NULL
▪ UNIQUE
▪ CHECK
▪ DEFAULT
▪ INDEX

NOT NULL

This constraint ensures that a column cannot have a NULL value.

Example

1

2

3

4

--NOT NULL on Create Table

CREATE TABLE Employee_Info

(

EmployeeID int NOT NULL,

https://www.edureka.co/blog/sql-commands#NOT%20NULL
https://www.edureka.co/blog/sql-commands#UNIQUE
https://www.edureka.co/blog/sql-commands#CHECK
https://www.edureka.co/blog/sql-commands#DEFAULT
https://www.edureka.co/blog/sql-commands#INDEX

5

6

7

8

9

10

11

12

13

14

15

16

17

EmployeeName varchar(255) NOT NULL,

Emergency ContactName varchar(255),

PhoneNumber int NOT NULL,

Address varchar(255),

City varchar(255),

Country varchar(255)

);

--NOT NULL on ALTER TABLE

ALTER TABLE Employee_Info

MODIFY PhoneNumber int NOT NULL;

UNIQUE

This constraint ensures that all the values in a column are unique.

Example

1

2

3

4

5

6

7

8

9

10

--UNIQUE on Create Table

CREATE TABLE Employee_Info

(

EmployeeID int NOT NULL UNIQUE,

EmployeeName varchar(255) NOT NULL,

Emergency ContactName varchar(255),

PhoneNumber int NOT NULL,

Address varchar(255),

City varchar(255),

Country varchar(255)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

);

--UNIQUE on Multiple Columns

CREATE TABLE Employee_Info

(

EmployeeID int NOT NULL,

EmployeeName varchar(255) NOT NULL,

Emergency ContactName varchar(255),

PhoneNumber int NOT NULL,

Address varchar(255),

City varchar(255),

Country varchar(255),

CONSTRAINT UC_Employee_Info UNIQUE(Employee_ID, PhoneNumber)

);

--UNIQUE on ALTER TABLE

ALTER TABLE Employee_Info

ADD UNIQUE (Employee_ID);

--To drop a UNIQUE constraint

ALTER TABLE Employee_Info

DROP CONSTRAINT UC_Employee_Info;

36

CHECK

This constraint ensures that all the values in a column satisfy a specific condition.

Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

--CHECK Constraint on CREATE TABLE

CREATE TABLE Employee_Info

(

EmployeeID int NOT NULL,

EmployeeName varchar(255),

Emergency ContactName varchar(255),

PhoneNumber int,

Address varchar(255),

City varchar(255),

Country varchar(255) CHECK (Country=='India')

);

--CHECK Constraint on multiple columns

CREATE TABLE Employee_Info

(

EmployeeID int NOT NULL,

EmployeeName varchar(255),

Emergency ContactName varchar(255),

PhoneNumber int,

Address varchar(255),

City varchar(255),

Country varchar(255) CHECK (Country = 'India' AND Cite = 'Hyderabad')

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

);

--CHECK Constraint on ALTER TABLE

ALTER TABLE Employee_Info

ADD CHECK (Country=='India');

--To give a name to the CHECK Constraint

ALTER TABLE Employee_Info

ADD CONSTRAINT CheckConstraintName CHECK (Country=='India');

--To drop a CHECK Constraint

ALTER TABLE Employee_Info

DROP CONSTRAINT CheckConstraintName;

DEFAULT

This constraint consists of a set of default values for a column when no value is specified.

Example

1

2

3

4

5

--DEFAULT Constraint on CREATE TABLE

CREATE TABLE Employee_Info

(

EmployeeID int NOT NULL,

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

EmployeeName varchar(255),

Emergency ContactName varchar(255),

PhoneNumber int,

Address varchar(255),

City varchar(255),

Country varchar(255) DEFAULT 'India'

);

--DEFAULT Constraint on ALTER TABLE

ALTER TABLE Employee_Info

ADD CONSTRAINT defau_Country

DEFAULT 'India' FOR Country;

--To drop the Default Constraint

ALTER TABLE Employee_Info

ALTER COLUMN Country DROP DEFAULT;

INDEX

This constraint is used to create indexes in the table, through which you can create and retrieve

data from the database very quickly.

Syntax

--Create an Index where duplicate values are allowed
CREATE INDEX IndexName
ON TableName (Column1, Column2, ...ColumnN);

--Create an Index where duplicate values are not allowed
CREATE UNIQUE INDEX IndexName
ON TableName (Column1, Column2, ...ColumnN);

Example

1

2

3

4

5

6

CREATE INDEX idex_EmployeeName

ON Persons (EmployeeName);

--To delete an index in a table

DROP INDEX Employee_Info.idex_EmployeeName;

Now, let us look into the next part of this article i.e. DML Commands.

SQL Commands: Data Manipulation Language Commands

(DML)

This section of the article will give you an insight into the commands through which you can

manipulate the database. The commands are as follows:

▪ USE
▪ INSERT INTO
▪ UPDATE
▪ DELETE
▪ SELECT

Apart from these commands, there are also other manipulative operators/functions such as:

▪ Operators
▪ Aggregate Functions
▪ NULL Functions
▪ Aliases & Case Statement

USE

The USE statement is used to select the database on which you want to perform operations.

Syntax

USE DatabaseName;
Example

1 USE Employee;

INSERT INTO

This statement is used to insert new records into the table.

https://www.edureka.co/blog/sql-commands#USE
https://www.edureka.co/blog/sql-commands#INSERT%20INTO
https://www.edureka.co/blog/sql-commands#UPDATE
https://www.edureka.co/blog/sql-commands#DELETE
https://www.edureka.co/blog/sql-commands#SELECT
https://www.edureka.co/blog/sql-commands#Operators
https://www.edureka.co/blog/sql-commands#Aggregate%20Functions
https://www.edureka.co/blog/sql-commands#NULL%20Functions
https://www.edureka.co/blog/sql-commands#Aliases%20and%20Case%20Statement

Syntax

INSERT INTO TableName (Column1, Column2, Column3, ...,ColumnN)
VALUES (value1, value2, value3, ...);

--If you don't want to mention the column names then use the below
syntax

INSERT INTO TableName
VALUES (Value1, Value2, Value3, ...);
Example

1

2

3

4

5

INSERT INTO Employee_Info(EmployeeID, EmployeeName, Emergency ContactName, PhoneNumber, Address, City, Country)

VALUES ('06', 'Sanjana','Jagannath', '9921321141', 'Camel Street House No 12', 'Chennai', 'India');

INSERT INTO Employee_Info

VALUES ('07', 'Sayantini','Praveen', '9934567654', 'Nice Road 21', 'Pune', 'India');

UPDATE

This statement is used to modify the records already present in the table.

Syntax

UPDATE TableName
SET Column1 = Value1, Column2 = Value2, ...
WHERE Condition;
Example

1

2

3

UPDATE Employee_Info

SET EmployeeName = 'Aahana', City= 'Ahmedabad'

WHERE EmployeeID = 1;

DELETE

This statement is used to delete the existing records in a table.

Syntax

DELETE FROM TableName WHERE Condition;
Example

1

2

DELETE FROM Employee_Info

WHERE EmployeeName='Preeti';

SELECT

This statement is used to select data from a database and the data returned is stored in a result

table, called the result-set.

Syntax

SELECT Column1, Column2, ...ColumN
FROM TableName;

--(*) is used to select all from the table
SELECT * FROM table_name;

-- To select the number of records to return use:
SELECT TOP 3 * FROM TableName;
Example

1

2

3

4

5

6

7

8

SELECT EmployeeID, EmployeeName

FROM Employee_Info;

--(*) is used to select all from the table

SELECT * FROM Employee_Info;

-- To select the number of records to return use:

SELECT TOP 3 * FROM Employee_Info;

Apart from just using the SELECT keyword individually, you can use the following keywords

with the SELECT statement:

•
▪ DISTINCT
▪ ORDER BY
▪ GROUP BY
▪ HAVING Clause
▪ INTO

The ‘SELECT DISTINCT’ Statement

This statement is used to return only different values.

Syntax

SELECT DISTINCT Column1, Column2, ...ColumnN
FROM TableName;

https://www.edureka.co/blog/sql-commands#DISTINCT
https://www.edureka.co/blog/sql-commands#ORDER%20BY
https://www.edureka.co/blog/sql-commands#GROUP%20BY
https://www.edureka.co/blog/sql-commands#HAVING%20Clause
https://www.edureka.co/blog/sql-commands#INTO

Example

1 SELECT DISTINCT PhoneNumber FROM Employee_Info;

The ‘ORDER BY’ Statement

The ‘ORDER BY’ statement is used to sort the required results in ascending or descending order.

The results are sorted in ascending order by default. Yet, if you wish to get the required results in

descending order, you have to use the DESC keyword.

Syntax

SELECT Column1, Column2, ...ColumnN
FROM TableName
ORDER BY Column1, Column2, ... ASC|DESC;
Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

-- Select all employees from the 'Employee_Info' table sorted by EmergencyContactName:

SELECT * FROM Employee_Info

ORDER BY EmergencyContactName;

-- Select all employees from the 'Employee_Info' table sorted by EmergencyContactName in Descending order:

SELECT * FROM Employee_Info

ORDER BY EmergencyContactName DESC;

-- Select all employees from the 'Employee_Info' table sorted by EmergencyContactName and EmployeeName:

SELECT * FROM Employee_Info

ORDER BY EmergencyContactName, EmployeeName;

/* Select all employees from the 'Employee_Info' table sorted by EmergencyContactName in Descending order and EmployeeName in Ascending order:

*/

SELECT * FROM Employee_Info

ORDER BY EmergencyContactName ASC, EmployeeName DESC;

The ‘GROUP BY’ Statement

This ‘GROUP BY’ statement is used with the aggregate functions to group the result-set by one

or more columns.

Syntax

SELECT Column1, Column2,..., ColumnN

FROM TableName
WHERE Condition
GROUP BY ColumnName(s)
ORDER BY ColumnName(s);
Example

1

2

3

4

5

-- To list the number of employees from each city.

SELECT COUNT(EmployeeID), City

FROM Employee_Info

GROUP BY City;

The ‘HAVING’ Clause

The ‘HAVING’ clause is used in SQL because the WHERE keyword cannot be used

everywhere.

Syntax

SELECT ColumnName(s)
FROM TableName
WHERE Condition
GROUP BY ColumnName(s)
HAVING Condition
ORDER BY ColumnName(s);
Example

1

2

3

4

5

6

7

/* To list the number of employees in each city. The employees should be sorted high to low and only those cities must be included

who have more than 5 employees:*/

SELECT COUNT(EmployeeID), City

FROM Employee_Info

GROUP BY City

HAVING COUNT(EmployeeID) > 2

ORDER BY COUNT(EmployeeID) DESC;

The ‘SELECT INTO’ Statement

The ‘SELECT INTO’ statement is used to copy data from one table to another.

Syntax

SELECT *
INTO NewTable [IN ExternalDB]
FROM OldTable

WHERE Condition;
Example

1

2

3

4

5

6

7

8

9

10

11

-- To create a backup of database 'Employee'

SELECT * INTO EmployeeBackup

FROM Employee;

--To select only few columns from Employee

SELECT EmployeeName, PhoneNumber INTO EmployeeContactDetails

FROM Employee;

SELECT * INTO BlrEmployee

FROM Employee

WHERE City = 'Bangalore';

Now, as I mentioned before, let us move onto our next section in this article on SQL Commands,

i.e. the Operators.

Operators in SQL

The different set of operators available in SQL are as follows:

Let us look into each one of them, one by one.

Arithmetic Operators

Operator Description

% Modulous [A % B]

/ Division [A / B]

* Multiplication [A * B]

– Subtraction [A – B]

+ Addition [A + B]

Bitwise Operators

Operator Description

^ Bitwise Exclusive OR (XOR) [A ^ B]

| Bitwise OR [A | B]

& Bitwise AND [A & B]

Comparison Operators

Operator Description

< > Not Equal to [A < > B]

<= Less than or equal to [A <= B]

>= Greater than or equal to [A >= B]

< Less than [A < B]

> Greater than [A > B]

= Equal to [A = B]

Compound Operators

Operator Description

|*= Bitwise OR equals [A |*= B]

^-= Bitwise Exclusive equals [A ^-= B]

&= Bitwise AND equals [A &= B]

%= Modulo equals [A %= B]

/= Divide equals [A /= B]

= Multiply equals [A= B]

-= Subtract equals [A-= B]

+= Add equals [A+= B]

Logical Operators

The Logical operators present in SQL are as follows:

•
▪ AND
▪ OR
▪ NOT
▪ BETWEEN
▪ LIKE
▪ IN
▪ EXISTS
▪ ALL
▪ ANY

AND Operator

This operator is used to filter records that rely on more than one condition. This operator displays

the records, which satisfy all the conditions separated by AND, and give the output TRUE.

Syntax

SELECT Column1, Column2, ..., ColumnN
FROM TableName
WHERE Condition1 AND Condition2 AND Condition3 ...;
Example

1

2

SELECT * FROM Employee_Info

WHERE City='Mumbai' AND City='Hyderabad';</pre>

OR Operator

This operator displays all those records which satisfy any of the conditions separated by OR and

give the output TRUE.

Syntax

SELECT Column1, Column2, ..., ColumnN
FROM TableName
WHERE Condition1 OR Condition2 OR Condition3 ...;

https://www.edureka.co/blog/sql-commands#AND
https://www.edureka.co/blog/sql-commands#OR
https://www.edureka.co/blog/sql-commands#NOT
https://www.edureka.co/blog/sql-commands#BETWEEN
https://www.edureka.co/blog/sql-commands#LIKE
https://www.edureka.co/blog/sql-commands#IN
https://www.edureka.co/blog/sql-commands#EXISTS
https://www.edureka.co/blog/sql-commands#ALL
https://www.edureka.co/blog/sql-commands#ANY

Example

1

2

SELECT * FROM Employee_Info

WHERE City='Mumbai' OR City='Hyderabad';

NOT Operator

The NOT operator is used, when you want to display the records which do not satisfy a

condition.

Syntax

SELECT Column1, Column2, ..., ColumnN
FROM TableName
WHERE NOT Condition;
Example

1

2

SELECT * FROM Employee_Info

WHERE NOT City='Mumbai';

NOTE: You can also combine the above three operators and write a query as

follows:

1

2

SELECT * FROM Employee_Info

WHERE NOT Country='India' AND (City='Bangalore' OR City='Hyderabad');

NOTE: You can also combine the above three operators and write a query as

follows:

1

2

SELECT * FROM Employee_Info

WHERE NOT Country='India' AND (City='Bangalore' OR City='Hyderabad');

BETWEEN Operator

The BETWEEN operator is used, when you want to select values within a given range. Since this

is an inclusive operator, both the starting and ending values are considered.

Syntax

SELECT ColumnName(s)
FROM TableName
WHERE ColumnName BETWEEN Value1 AND Value2;
Example

1 SELECT * FROM Employee_Salary

2 WHERE Salary BETWEEN 40000 AND 50000;

LIKE Operator

The LIKE operator is used in a WHERE clause to search for a specified pattern in a column of a

table. There are mainly two wildcards that are used in conjunction with the LIKE operator:

• % – It matches 0 or more character.
• _ – It matches exactly one character.

Syntax

SELECT ColumnName(s)
FROM TableName
WHERE ColumnName LIKE pattern;
Refer to the following table for the various patterns that you can mention with the LIKE

operator.

Like Operator Condition Description

WHERE CustomerName LIKE ‘v% Finds any values that start with “v”

WHERE CustomerName LIKE ‘%v’ Finds any values that end with “v”

WHERE CustomerName LIKE ‘%and%’ Finds any values that have “and” in any position

WHERE CustomerName LIKE ‘_q%’ Finds any values that have “q” in the second position.

WHERE CustomerName LIKE ‘u_%_%’
Finds any values that start with “u” and are at least 3

characters in length

WHERE ContactName LIKE ‘m%a’ Finds any values that start with “m” and end with “a”

Example

1

2

SELECT * FROM Employee_Info

WHERE EmployeeName LIKE 'S%';

IN Operator

This operator is used for multiple OR conditions. This allows you to specify multiple values in a

WHERE clause.

Syntax

SELECT ColumnName(s)
FROM TableName
WHERE ColumnName IN (Value1,Value2...);
Example

1

2

SELECT * FROM Employee_Info

WHERE City IN ('Mumbai', 'Bangalore', 'Hyderabad');

NOTE: You can also use IN while writing Nested Queries.

EXISTS Operator

The EXISTS operator is used to test if a record exists or not.

Syntax

SELECT ColumnName(s)
FROM TableName
WHERE EXISTS
(SELECT ColumnName FROM TableName WHERE condition);
Example

1

2

3

SELECT EmergencyContactName

FROM Employee_Info

WHERE EXISTS (SELECT EmergencyContactName FROM Employee_Info WHERE EmployeeId = 05 AND City = 'Kolkata');

ALL Operator

The ALL operator is used with a WHERE or HAVING clause and returns TRUE if all of the

subquery values meet the condition.

Syntax

SELECT ColumnName(s)
FROM TableName
WHERE ColumnName operator ALL
(SELECT ColumnName FROM TableName WHERE condition);
Example

1

2

3

SELECT EmployeeName

FROM Employee_Info

WHERE EmployeeID = ALL (SELECT EmployeeID FROM Employee_Info WHERE City = 'Hyderabad');

ANY Operator

Similar to the ALL operator, the ANY operator is also used with a WHERE or HAVING

clause and returns true if any of the subquery values meet the condition.

Syntax

SELECT ColumnName(s)
FROM TableName

https://www.edureka.co/blog/sql-commands#HAVING%20Clause
https://www.edureka.co/blog/sql-commands#HAVING%20Clause
https://www.edureka.co/blog/sql-commands#HAVING%20Clause

WHERE ColumnName operator ANY
(SELECT ColumnName FROM TableName WHERE condition);
Example

1

2

3

SELECT EmployeeName

FROM Employee_Info

WHERE EmployeeID = ANY (SELECT EmployeeID FROM Employee_Info WHERE City = 'Hyderabad' OR City = 'Kolkata');

Next, in this article on SQL Commands, let us look into the various Aggregate Functions

provided in SQL.

Aggregate Functions

This section of the article will include the following functions:

•
▪ MIN()
▪ MAX()
▪ COUNT()
▪ SUM()
▪ AVG()

MIN() Function

The MIN function returns the smallest value of the selected column in a table.

Syntax

SELECT MIN(ColumnName)
FROM TableName
WHERE Condition;
Example

1

2

SELECT MIN(EmployeeID) AS SmallestID

FROM Employee_Info;

MAX() Function

The MAX function returns the largest value of the selected column in a table.

Syntax

SELECT MAX(ColumnName)
FROM TableName
WHERE Condition;
Example

1

2

SELECT MAX(Salary) AS LargestFees

FROM Employee_Salary;

https://www.edureka.co/blog/sql-commands#MIN()
https://www.edureka.co/blog/sql-commands#MAX()
https://www.edureka.co/blog/sql-commands#COUNT()
https://www.edureka.co/blog/sql-commands#SUM()
https://www.edureka.co/blog/sql-commands#AVG()

COUNT() Function

The COUNT function returns the number of rows which match the specified criteria.

Syntax

SELECT COUNT(ColumnName)
FROM TableName
WHERE Condition;
Example

1

2

SELECT COUNT(EmployeeID)

FROM Employee_Info;

SUM() Function

The SUM function returns the total sum of a numeric column that you choose.

Syntax

SELECT SUM(ColumnName)
FROM TableName
WHERE Condition;
Example

1

2

SELECT SUM(Salary)

FROM Employee_Salary;

AVG() Function

The AVG function returns the average value of a numeric column that you choose.

Syntax

SELECT AVG(ColumnName)
FROM TableName
WHERE Condition;
Example

1

2

SELECT AVG(Salary)

FROM Employee_Salary;

NULL Functions

The NULL functions are those functions which let you return an alternative value if an

expression is NULL. In the SQL Server, the function is ISNULL().

Example

1

2

SELECT EmployeeID * (Month_Year_of_Salary + ISNULL(Salary, 0))

FROM Employee_Salary;

Aliases & Case Statement

In this section of this article on SQL Commands, you will go through the Aliases and Case

statement one after the other.

Aliases

Aliases are used to give a column/table a temporary name and only exists for a duration of the

query.

Syntax

--Alias Column Syntax

SELECT ColumnName AS AliasName
FROM TableName;

--Alias Table Syntax

SELECT ColumnName(s)
FROM TableName AS AliasName;
Example

1

2

3

4

5

SELECT EmployeeID AS ID, EmployeeName AS EmpName

FROM Employee_Info;

SELECT EmployeeName AS EmpName, EmergencyContactName AS [Contact Name]

FROM Employee_Info;

Case Statement

This statement goes through all the conditions and returns a value when the first condition is met.

So, if no conditions are TRUE, it returns the value in the ELSE clause. Also, if no conditions are

true and there is no ELSE part, then it returns NULL.

Syntax

CASE
WHEN Condition1 THEN Result1
WHEN Condition2 THEN Result2
WHEN ConditionN THEN ResultN
ELSE Result
END;
Example

1

2

SELECT EmployeeName, City

FROM Employee_Info

ORDER BY

https://www.edureka.co/blog/sql-commands#Aliases
https://www.edureka.co/blog/sql-commands#Case%20statement
https://www.edureka.co/blog/sql-commands#Case%20statement

3

4

5

6

7

(CASE

 WHEN City IS NULL THEN 'Country is India by default'

 ELSE City

END);

Now, that I have told you a lot about DML commands in this article on SQL Commands, let me

just tell you in short about Nested Queries, Joins, Set Operations, and Dates & Auto Increment.

SQL Commands: Nested Queries

Nested queries are those queries which have an outer query and inner subquery. So, basically,

the subquery is a query which is nested within another query such

as SELECT, INSERT, UPDATE or DELETE. Refer to the image below:

SQL Commands: Joins

JOINS are used to combine rows from two or more tables, based on a related column between

those tables. The following are the types of joins:

• INNER JOIN: This join returns those records which have matching values in both the tables.
• FULL JOIN: This join returns all those records which either have a match in the left or the right

table.
• LEFT JOIN: This join returns records from the left table, and also those records which satisfy the

condition from the right table.

https://www.edureka.co/blog/sql-commands#Nested%20Queries
https://www.edureka.co/blog/sql-commands#Joins
https://www.edureka.co/blog/sql-commands#Set%20Operations
https://www.edureka.co/blog/sql-commands#Dates%20and%20Auto%20Increment
https://www.edureka.co/blog/sql-commands#SELECT
https://www.edureka.co/blog/sql-commands#INSERT%20INTO
https://www.edureka.co/blog/sql-commands#UPDATE
https://www.edureka.co/blog/sql-commands#DELETE
https://www.edureka.co/blog/sql-commands#INNER%20JOIN:
https://www.edureka.co/blog/sql-commands#FULL%20JOIN:
https://www.edureka.co/blog/sql-commands#LEFT%20JOIN:

• RIGHT JOIN: This join returns records from the right table, and also those records which satisfy
the condition from the left table.

Refer to the image below.

Let’s consider the below table apart from the Employee_Info table, to understand the syntax of

joins.

TechID EmpID TechName ProjectStartDate

1 10 DevOps 04-01-2019

2 11 Blockchain 06-07-2019

3 12 Python 01-03-2019

INNER JOIN

Syntax

SELECT ColumnName(s)
FROM Table1
INNER JOIN Table2 ON Table1.ColumnName = Table2.ColumnName;
Example

1

2

3

SELECT Technologies.TechID, Employee_Info.EmployeeName

FROM Technologies

INNER JOIN Employee_Info ON Technologies.EmpID = Employee_Info.EmpID;

FULL JOIN

Syntax

SELECT ColumnName(s)
FROM Table1
FULL OUTER JOIN Table2 ON Table1.ColumnName = Table2.ColumnName;
Example

1 SELECT Employee_Info.EmployeeName, Technologies.TechID

https://www.edureka.co/blog/sql-commands#RIGHT%20JOIN:

2

3

4

FROM Employee_Info

FULL OUTER JOIN Orders ON Employee_Info.EmpID=Employee_Salary.EmpID

ORDER BY Employee_Info.EmployeeName;

LEFT JOIN

Syntax

SELECT ColumnName(s)
FROM Table1
LEFT JOIN Table2 ON Table1.ColumnName = Table2.ColumnName;
Example

1

2

3

4

SELECT Employee_Info.EmployeeName, Technologies.TechID

FROM Employee_Info

LEFT JOIN Technologies ON Employee_Info.EmployeeID = Technologies.EmpIDID

ORDER BY Employee_Info.EmployeeName;

RIGHT JOIN

Syntax

SELECT ColumnName(s)
FROM Table1
RIGHT JOIN Table2 ON Table1.ColumnName = Table2.ColumnName;
Example

1

2

3

4

SELECT Technologies.TechID

FROM Technologies

RIGHT JOIN Employee_Info ON Technologies.EmpID = Employee_Info.EmployeeID

ORDER BY Technologies.TechID;

SQL Commands: Set Operations

There are mainly three set operations:UNION, INTERSECT, EXCEPT. You can refer to the

image below to understand the set operations in SQL.

https://www.edureka.co/blog/sql-commands#UNION
https://www.edureka.co/blog/sql-commands#INTERSECT
https://www.edureka.co/blog/sql-commands#EXCEPT

UNION

This operator is used to combine the result-set of two or more SELECT statements.

Syntax

SELECT ColumnName(s) FROM Table1
UNION
SELECT ColumnName(s) FROM Table2;
INTERSECT
This clause used to combine two SELECT statements and return the intersection of the data-sets

of both the SELECT statements.

Syntax

SELECT Column1 , Column2
FROM TableName
WHERE Condition

INTERSECT

SELECT Column1 , Column2
FROM TableName
WHERE Condition
EXCEPT
This operator returns those tuples that are returned by the first SELECT operation, and are not

returned by the second SELECT operation.

Syntax

SELECT ColumnName
FROM TableName

EXCEPT

SELECT ColumnName
FROM TableName;

https://www.edureka.co/blog/sql-commands#SELECT
https://www.edureka.co/blog/sql-commands#SELECT
https://www.edureka.co/blog/sql-commands#SELECT

Next, in this article, let us look into the date functions and auto-increment fields.

SQL Commands: Dates & Auto Increment

In this section of this article, I will explain to you how to use the Date functions and also

the Auto-Increment fields.

Dates

The following data types are present in a SQL Server to store a date or a date/time value in a

database.

 Data Type Format

DATE YYYY-MM-DD

DATETIME YYYY-MM-DD HH:MI:SS

SMALLDATETIME YYYY-MM-DD HH:MI:SS

TIMESTAMP A Unique Number

Example

1 SELECT * FROM Technologies WHERE ProjectStartDate='2019-04-01'

Auto Increment

This field generates a unique number automatically when a new record is inserted into a

table. The MS SQL Server uses the IDENTITY keyword for this feature.

Example

1

2

3

4

5

6

7

/* To define the "EmployeeID" column to be an auto-increment primary key field in the "Employee_Info" table */

CREATE TABLE Employee_Info (

EmployeeID INT IDENTITY(1,1) PRIMARY KEY,

EmployeeName VARCHAR(255) NOT NULL

EmergencyContactName VARCHAR(255) NOT NULL,

);

Now, that you guys know the DML commands, let’s move onto our next section in this article on

SQL Commands i.e. the DCL commands.

https://www.edureka.co/blog/sql-commands#Dates
https://www.edureka.co/blog/sql-commands#Auto-Increment

SQL Commands: Data Control Language Commands

(DCL)

This section of the article will give you an insight into the commands which are used to enforce

database security in multiple user database environments. The commands are as follows:

•
▪ GRANT
▪ REVOKE

GRANT

This command is used to provide access or privileges on the database and its objects to the users.

Syntax

GRANT PrivilegeName
ON ObjectName
TO {UserName |PUBLIC |RoleName}
[WITH GRANT OPTION];
where,

• PrivilegeName – Is the privilege/right/access granted to the user.
• ObjectName – Name of a database object like TABLE/VIEW/STORED PROC.
• UserName – Name of the user who is given the access/rights/privileges.
• PUBLIC – To grant access rights to all users.
• RoleName – The name of a set of privileges grouped together.
• WITH GRANT OPTION – To give the user access to grant other users with rights.

Example

1

2

-- To grant SELECT permission to Employee_Info table to user1

GRANT SELECT ON Employee_Info TO user1;

REVOKE

This command is used to withdraw the user’s access privileges given by using

the GRANT command.

Syntax

REVOKE PrivilegeName
ON ObjectName
FROM {UserName |PUBLIC |RoleName}
Example

1

2

-- To revoke the granted permission from user1

REVOKE SELECT ON Employee_Info TO user1;

https://www.edureka.co/blog/sql-commands#GRANT
https://www.edureka.co/blog/sql-commands#REVOKE
https://www.edureka.co/blog/sql-commands#GRANT

Now, next in this article on SQL Commands, I will discuss Views, Stored Procedures,

and Triggers.

SQL Commands: Views

A view in SQL is a single table, which is derived from other tables. So, a view contains rows and

columns similar to a real table and has fields from one or more table.

The ‘CREATE VIEW’ statement

This statement is used to create a view, from a table.

Syntax

CREATE VIEW ViewName AS
SELECT Column1, Column2, ..., ColumnN
FROM TableName
WHERE Condition;
Example

1

2

3

4

CREATE VIEW [Kolkata Employees] AS

SELECT EmployeeName, PhoneNumber

FROM Employee_Info

WHERE City = "Kolkata";

The ‘CREATE OR REPLACE VIEW’ statement

This statement is used to update a view.

Syntax

CREATE VIEW OR REPLACE ViewName AS
SELECT Column1, Column2, ..., ColumnN
FROM TableName

https://www.edureka.co/blog/sql-commands#Views
https://www.edureka.co/blog/sql-commands#Stored%20Procedures
https://www.edureka.co/blog/sql-commands#Triggers

WHERE Condition;
Example

1

2

3

4

CREATE VIEW OR REPLACE [Kolkata Employees] AS

SELECT EmployeeName, PhoneNumber

FROM Employee_Info

WHERE City = "Kolkata";

The ‘DROP VIEW’ statement

This statement is used to delete a view.

Syntax

DROP VIEW ViewName;
Example

1 DROP VIEW [Kolkata Employees];

SQL Commands: Stored Procedures

A code which you can save and reuse it again is known as StoredProcedures.

Syntax

CREATE PROCEDURE ProcedureName
AS
SQLStatement
GO;
Example

1 EXEC ProcedureName;

SQL Commands: Triggers

Triggers are a set of SQL statements which are stored in the database catalog. These statements

are executed whenever an event associated with a table occurs. So, a trigger can be invoked

either BEFORE or AFTER the data is changed by INSERT, UPDATE or DELETE statement.

Refer to the image below.

Syntax

CREATE TRIGGER [TriggerName]
[BEFORE | AFTER]
{INSERT | UPDATE | DELETE}
on [TableName]
[FOR EACH ROW]
[TriggerBody]
Now, let’s move on to the last section of this article on SQL Commands i.e. the Transaction

Control Language Commands.

MySQL DBA Certification Training

Weekday / Weekend BatchSQL Commands: Transaction Control Language Commands (TCL)

This section of the article will give you an insight into the commands which are used to manage

transactions in the database. The commands are as follows:

•
▪ COMMIT
▪ ROLLBACK
▪ SAVEPOINT

COMMIT

This command is used to save the transaction into the database.

Syntax

COMMIT;
ROLLBACK
This command is used to restore the database to the last committed state.

https://www.edureka.co/mysql-dba
https://www.edureka.co/mysql-dba
https://www.edureka.co/mysql-dba
https://www.edureka.co/blog/sql-commands#COMMIT
https://www.edureka.co/blog/sql-commands#ROLLBACK
https://www.edureka.co/blog/sql-commands#SAVEPOINT

Syntax

ROLLBACK;

NOTE: When you use ROLLBACK with SAVEPOINT, then you can directly

jump to a savepoint in an ongoing transaction. Syntax: ROLLBACK TO

SavepointName;

SAVEPOINT
This command is used to temporarily save a transaction. So if you wish to rollback to any point,

then you can save that point as a ‘SAVEPOINT’.

Syntax

SAVEPOINT SAVEPOINTNAME;
Consider the below example to understand the working of transactions in the database.

EmployeeID EmployeeName

 01 Ruhaan

02 Suhana

03 Aayush

04 Rashi

Now, use the below SQL queries to understand the transactions in the database.

1

2

3

4

5

6

7

8

9

10

INSERT INTO Employee_Table VALUES(05, 'Avinash');

COMMIT;

UPDATE Employee_Table SET name = 'Akash' WHERE id = '05';

SAVEPOINT S1;

INSERT INTO Employee_Table VALUES(06, 'Sanjana');

SAVEPOINT S2;

INSERT INTO Employee_Table VALUES(07, 'Sanjay');

SAVEPOINT S3;

INSERT INTO Employee_Table VALUES(08, 'Veena');

SAVEPOINT S4;

SELECT * FROM Employee_Table;

11

The output to the above set of queries would be as follows:

EmployeeID EmployeeName

 01 Ruhaan

02 Suhana

03 Aayush

04 Rashi

05 Akash

06 Sanjana

07 Sanjay

08 Veena

Now, if you rollback to S2 using the below queries, the output is mentioned in the below table.

1

2

ROLLBACK TO S2;

SELECT * FROM Employee_Table;

EmployeeID EmployeeName

 01 Ruhaan

02 Suhana

03 Aayush

04 Rashi

05 Akash

06 Sanjana

